Code: 20EE3501

III B.Tech - I Semester – Regular / Supplementary Examinations NOVEMBER 2023

CONTROL SYSTEMS (ELECTRICAL & ELECTRONICS ENGINEERING)

Duration: 3 hours Max. Marks: 70

Note: 1. This paper contains questions from 5 units of Syllabus. Each unit carries 14 marks and have an internal choice of Questions.

2. All parts of Question must be answered in one place.

BL – Blooms Level CO – Course Outcome

			BL	СО	Max. Marks		
UNIT-I							
1	a)	Write the differential equations governing the	L3	CO2	7 M		
		system shown in below fig.					
		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					
	b)	Explain briefly the closed loop control system	L3	CO2	7 M		
		with an application of air conditioning system.					
OR							
2	a)	Explain the effect of feedback on	L3	CO2	7 M		
		i) Sensitivity					
		ii) Gain					

	b)	Determine the transfer function of the network	L4	CO4	7 M		
		shown in fig.					
UNIT-II							
3	De	duce the transfer function of armature	L4	CO4	14 M		
	COI	ntrolled DC servo motor.					
		OR	1				
4	a)	What is Masons gain formula? Discuss the	L3	CO2	7 M		
		rules for drawing signal flow graphs with an					
		example.					
	b)	Determine x_6/x_1 for the given signal flow	L4	CO4	7 M		
		graph.					
		x_1 x_2 x_3 x_4 x_4 x_5 x_6 x_6					
UNIT-III							
5	a)	Write a short note on	L3	CO3	4 M		
		i. Delay time					
		ii. Rise time					
		iii. Peak time					
		iv. Maximum peak overshoot					
	b)	1 1	L3	CO3	10 M		
		when ζ <1. (under damped system).					
OR							

	1		ı	<u> </u>			
6	A	unity feedback system has $(s) = K/[s(s+2)(s+5)]$	L4	CO4	14 M		
	Sk	etch root locus and show on it					
	i) <i>i</i>	Angle of asymptodes					
	ii)	Centroid					
	iii)	Break away point					
	iv)	Root locus intersecting imaginary axis.					
		UNIT-IV					
7	Sk	etch the bode plot for the given transfer	L4	CO4	14 M		
	fur	nction; determine the system gain K for the gain					
	cro	oss-over frequency to be 5 rad/sec.					
	G($s = Ks^2 / [(1+0.2s)(1+0.02s)]$					
	ı	OR	l	<u>I</u>			
8	a)	Explain	L3	CO3	7 M		
		(i) Gain margin					
		(ii) Phase margin					
		(iii) Gain cross over frequency					
		(iv) Phase cross over frequency with an					
		example.					
	b)	Write short notes on resonant peak, resonant	L3	CO4	7 M		
		frequency and bandwidth with formulae?					
	I		L				
		UNIT-V					
9	a)	Obtain the state variable representation of an	L3	CO2	10 M		
		armature controlled DC motor.					
	b)	Write a short notes on	L3	CO2	4 M		
		(i) state variable (ii) state					
		(iii) state vector (iv) state space					
	1	OR	I	<u> </u>			

10	a)	Consider the system defined by	L4	CO5	8 M
		$ \dot{x} = Ax + Bu \\ y = Cx $			
		$A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -6 & -11 & -6 \end{bmatrix}$			
		$\boldsymbol{B} = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} \text{and} C = \begin{bmatrix} 10 & 5 & 1 \end{bmatrix}$			
		Determine the system for complete observability.			
	b)	List the properties of State transition matrix.	L4	CO5	6 M